My Archive
Navier-Stokes equation supplementary (2) 본문
$$\dfrac{1}{r}\dfrac{\partial}{\partial r}\left(r\dfrac{\partial u_{r}}{\partial r}\right) - \dfrac{u_{r}}{r^{2}} = \dfrac{\partial}{\partial r}\left(\dfrac{1}{r}\dfrac{\partial}{\partial r}(r\,u_{r})\right)$$
Left term
$$\dfrac{1}{r} \dfrac{\partial}{\partial r}\left(r\dfrac{\partial u_{r}}{\partial r}\right) = \dfrac{1}{r} \dfrac{\partial u_{r}}{\partial r} + \dfrac{1}{r}\cdot r \dfrac{\partial^{2} u_{r}}{\partial r^{2}} \cdots (1) $$
Right term
$$\dfrac{\partial}{\partial r}(r u_{r}) = u_{r}\left(\dfrac{\partial}{\partial r}r\right) + r\left(\dfrac{\partial}{\partial r}u_{r}\right)$$
$$\dfrac{1}{r}\dfrac{\partial}{\partial r}(r u_{r}) = \dfrac{u_{r}}{r} + \dfrac{\partial}{\partial r}u_{r}$$
$$\dfrac{\partial}{\partial}\left(\dfrac{1}{r}\dfrac{\partial}{\partial r}(r u_{r})\right) = \dfrac{\partial}{\partial r}\left(\dfrac{u_{r}}{r}\right) + \dfrac{\partial^{2} u_{r}}{\partial r^{2}} \cdots (2) $$
이때 위 식에서 우항의 첫 번째 항을 풀어보면 다음과 같아진다.
$$\dfrac{\partial}{\partial r} \dfrac{u_{r}}{r} = \dfrac{1}{r}\dfrac{\partial u_{r}}{\partial r} - \dfrac{u_{r}}{r^{2}} \cdots (3)$$
따라서 식 \((1),\, (2),\, (3)\)을 잘 정리해주면 둘이 같음을 알 수 있다.
Reference
Fluid mechanics 3rd edition in SI units p.469
'전공공부 > 유체역학' 카테고리의 다른 글
베르누이 방정식 유도 (0) | 2024.10.23 |
---|---|
Cauchy's equation by Extended divergence theorem (1) | 2023.10.23 |
Navier-Stokes equation supplementary (1) (0) | 2023.10.18 |
Second-order tensor expansion (0) | 2023.10.05 |
Cauchy's equation: Newton's 2nd Law (0) | 2023.09.19 |