My Archive
Navier-Stokes equation supplementary (1) 본문

σ=(λ+23μ)(→∇⋅→u)II+μ{→∇→u+(→∇→u)T−23(→∇⋅→u)II}=(λ+23μ)(→∇→u)II−23μ(→∇→u)II+μ→∇→u+μ(→∇→u)T=λ(→∇→u)II+23μ(→∇→u)II−23(→∇→u)II+μ→∇→u+μ(→∇→u)T=λ(→∇→u)II+μ(→∇→u+(→∇→u))T
이때 아래 식을 대입한다.
εij=(12∂u∂x12∂u∂y12∂u∂z12∂v∂x12∂v∂y12∂v∂z12∂w∂x12∂w∂y12∂w∂z)+(12∂u∂x12∂v∂x12∂w∂x12∂u∂y12∂v∂y12∂w∂y12∂w∂z12∂v∂z12∂w∂z)
εij=12(→∇→u)+12(→∇→u)T
따라서
σ=λ(→∇→u)II+2μ{12(→∇→u)+12(→∇→u)T}=λ(→∇→u)II+μ(→∇→u+(→∇→u)T)
'전공공부 > 유체역학' 카테고리의 다른 글
Navier-Stokes equation supplementary (2) (0) | 2023.10.24 |
---|---|
Cauchy's equation by Extended divergence theorem (2) | 2023.10.23 |
Second-order tensor expansion (1) | 2023.10.05 |
Cauchy's equation: Newton's 2nd Law (0) | 2023.09.19 |
미소체적을 통한 표면력 표현하기 (1) | 2023.09.19 |